首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22356篇
  免费   1576篇
  国内免费   1085篇
  2023年   275篇
  2022年   321篇
  2021年   993篇
  2020年   719篇
  2019年   947篇
  2018年   926篇
  2017年   704篇
  2016年   999篇
  2015年   1394篇
  2014年   1589篇
  2013年   1812篇
  2012年   2021篇
  2011年   1864篇
  2010年   1051篇
  2009年   947篇
  2008年   1047篇
  2007年   963篇
  2006年   866篇
  2005年   746篇
  2004年   648篇
  2003年   533篇
  2002年   480篇
  2001年   312篇
  2000年   321篇
  1999年   286篇
  1998年   168篇
  1997年   162篇
  1996年   179篇
  1995年   165篇
  1994年   136篇
  1993年   102篇
  1992年   152篇
  1991年   150篇
  1990年   124篇
  1989年   97篇
  1988年   98篇
  1987年   101篇
  1986年   70篇
  1985年   89篇
  1984年   50篇
  1983年   54篇
  1982年   27篇
  1981年   26篇
  1980年   24篇
  1979年   35篇
  1978年   28篇
  1977年   20篇
  1975年   29篇
  1974年   21篇
  1971年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Hypertension contributes to the high cardiac morbidity and mortality. Although oxidative stress plays an essential role in hypertensive heart diseases, the mechanism remains elusive. Transgenic mice with cardiac overexpression of metallothionein, a heavy metal‐binding scavenger, were challenged with NG‐nitro‐L‐arginine methyl ester (L‐NAME) for 14 days prior to measurement of myocardial contractile and intracellular Ca2+ anomalies as well as cell signalling mechanisms using Western blot and immunofluorescence analysis. L‐NAME challenge elicited hypertension, macrophage infiltration, oxidative stress, inflammation and cardiac dysfunction manifested as increased proinflammatory macrophage marker F4/80, interleukin‐1β (IL‐1β), intracellular production, LV end systolic and diastolic diameters as well as depressed fractional shortening. L‐NAME treatment reduced mitochondrial membrane potential (MMP), impaired cardiomyocyte contractile and intracellular Ca2+ properties as evidenced by suppressed peak shortening, maximal velocity of shortening/relengthening, rise in intracellular Ca2+, along with elevated baseline and peak intracellular Ca2+. These unfavourable mechanical changes and decreased MMP (except blood pressure and macrophage infiltration) were alleviated by overexpression of metallothionein. Furthermore, the apoptosis markers including BAD, Bax, Caspase 9, Caspase 12 and cleaved Caspase 3 were up‐regulated while the anti‐apoptotic marker Bcl‐2 was decreased by L‐NAME treatment. Metallothionein transgene reversed L‐NAME‐induced changes in Bax, Bcl‐2, BAD phosphorylation, Caspase 9, Caspase 12 and cleaved Caspase 3. Our results suggest that metallothionein protects against L‐NAME‐induced myocardial contractile anomalies in part through inhibition of apoptosis.  相似文献   
992.
993.
Dai  Chunxiao  Ma  Qiao  Li  Yan  Zhou  Duandi  Yang  Bingyu  Qu  Yuanyuan 《Bioprocess and biosystems engineering》2019,42(12):1963-1971
Bioprocess and Biosystems Engineering - Indigo, one of the most widely used dyes, is mainly produced by chemical processes, which generate amounts of pollutants and need high energy consumption....  相似文献   
994.
The site-specific nature and ease of handling of clustered regularly interspaced palindromic repeat(CRISPR)/Cas9 has fulfilled the decades-long goal of genome engineering,and thus has pushed the biological sciences into a new era in which site-directed manipulation of DNA is no longer a short slab(Doudna and Charpentier,2014).The incomparable power of this system also enabled unprecedented new opportunities for practical applications in agriculture,ecosystem and human health(Liu,2017).However,with the extremely rapid development and application of CRISPR system,concerns about its bio-safety have been increasing(Caplan et al.,2015;Taning et al.,2017).While multiple studies have addressed this issue,alternative options for regulating Cas9 are of great interest.As has been proved by increasing evidences,another well?known concern is the off-target effects,which could not only confound research experiments or breeding,but also cause unwanted side effects in the forthcoming therapeutic uses(Fu et aL,2013;Taning et al.,2017;Zhang et al.,2018).  相似文献   
995.
996.
水稻(Oryza sativa)细菌性穗枯病是世界性的重要病害之一, 严重威胁全球范围水稻的高产稳产。虽然该病目前仍被列为我国的检疫性病害, 但近几年的研究表明, 穗枯病随时有在内地蔓延的潜在危险, 因此除了加强检疫工作, 开展针对性的防控技术研发也十分必要。水稻细菌性穗枯病菌在侵染过程中涉及多种毒力因子, 同时, 水稻在与病原菌的长期互作过程中演化出了多种防卫机制, 抗性基因是主要的防卫机制之一。挖掘水稻基因组中抗细菌性穗枯病遗传位点并培育抗病品种是最安全且经济有效的防治途径。该文综述了水稻细菌性穗枯病的病原菌特性、发病特征、发病机制、病害循环和对水稻细菌性穗枯病的抗性研究现状, 以期为挖掘和分离水稻穗枯病抗性位点提供参考。  相似文献   
997.
Cultivated peanut (Arachis hypogaea L.) is an important grain legume providing high‐quality cooking oil, rich proteins and other nutrients. Shelling percentage (SP) is the 2nd most important agronomic trait after pod yield and this trait significantly affects the economic value of peanut in the market. Deployment of diagnostic markers through genomics‐assisted breeding (GAB) can accelerate the process of developing improved varieties with enhanced SP. In this context, we deployed the QTL‐seq approach to identify genomic regions and candidate genes controlling SP in a recombinant inbred line population (Yuanza 9102 × Xuzhou 68‐4). Four libraries (two parents and two extreme bulks) were constructed and sequenced, generating 456.89–790.32 million reads and achieving 91.85%–93.18% genome coverage and 14.04–21.37 mean read depth. Comprehensive analysis of two sets of data (Yuanza 9102/two bulks and Xuzhou 68‐4/two bulks) using the QTL‐seq pipeline resulted in discovery of two overlapped genomic regions (2.75 Mb on A09 and 1.1 Mb on B02). Nine candidate genes affected by 10 SNPs with non‐synonymous effects or in UTRs were identified in these regions for SP. Cost‐effective KASP (Kompetitive Allele‐Specific PCR) markers were developed for one SNP from A09 and three SNPs from B02 chromosome. Genotyping of the mapping population with these newly developed KASP markers confirmed the major control and stable expressions of these genomic regions across five environments. The identified candidate genomic regions and genes for SP further provide opportunity for gene cloning and deployment of diagnostic markers in molecular breeding for achieving high SP in improved varieties.  相似文献   
998.
Upland cotton (Gossypium hirsutum) is the world's largest source of natural fibre and dominates the global textile industry. Hybrid cotton varieties exhibit strong heterosis that confers high fibre yields, yet the genome‐wide effects of artificial selection that have influenced Upland cotton during its breeding history are poorly understood. Here, we resequenced Upland cotton genomes and constructed a variation map of an intact breeding pedigree comprising seven elite and 19 backbone parents. Compared to wild accessions, the 26 pedigree accessions underwent strong artificial selection during domestication that has resulted in reduced genetic diversity but stronger linkage disequilibrium and higher extents of selective sweeps. In contrast to the backbone parents, the elite parents have acquired significantly improved agronomic traits, with an especially pronounced increase in the lint percentage. Notably, identify by descent (IBD) tracking revealed that the elite parents inherited abundant beneficial trait segments and loci from the backbone parents and our combined analyses led to the identification of a core genomic segment which was inherited in the elite lines from the parents Zhong 7263 and Ejing 1 and that was strongly associated with lint percentage. Additionally, SNP correlation analysis of this core segment showed that a non‐synonymous SNP (A‐to‐G) site in a gene encoding the cell wall‐associated receptor‐like kinase 3 (GhWAKL3) protein was highly correlated with increased lint percentage. Our results substantially increase the valuable genomics resources available for future genetic and functional genomics studies of cotton and reveal insights that will facilitate yield increases in the molecular breeding of cotton.  相似文献   
999.
Ma  Wen-Tao  Liu  Qi  Ning  Meng-Xia  Qi  Yu-Xu  Rehman  Saad  Chen  De-Kun 《BMC biotechnology》2019,19(1):1-11
Background

Tobacco stalk (TS), a major agricultural waste abundant in pectin, has resulted in concerns about the need for its reuse. The nicotine in TS is considered a chemical that is to\xic and hazardous to the environment.

Results

In this study, Bacillus tequilensis CAS-MEI-2-33 was isolated from cigar wrappers to produce alkaline pectinase using TS. Subsequently, the medium and fermentation conditions for the production of pectinase by B. tequilensis CAS-MEI-2-33 were optimized. The optimal fermentation period, pH of the initial fermentation medium, concentration of TS, and inoculum amount for B. tequilensis CAS-MEI-2-33 were 40 h, 40 g/L, 7.0, and 3%, respectively. Under optimal conditions, the pectinase activity was 1370 U/mL. Then, the enzymatic properties, such as the optimum pH, reaction temperature, temperature stability, and effects of metal ions, were studied. The optimal pH was determined to be 10.0, indicating that the enzyme was an alkaline pectinase. The optimal temperature was 40 °C, and pectinase activity was stable at 40 °C. The Ag+ metal ions were shown to remarkably promote enzyme activity. The pectinase was partly purified by ammonium sulfate precipitation, ion exchange chromatography, and Sephacryl S-100 chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and LC-MS/MS analyses were utilized to analyze the pectinase.

Conclusions

This study provided a new alkaline pectinase candidate and a new strategy for the use of TS.

  相似文献   
1000.
Rho‐associated coiled‐coil kinase 1 (ROCK1) is proposed to be implicated in Aβ suppression; however, the role for ROCK1 in amyloidogenic metabolism of amyloid precursor protein (APP) to produce Aβ was unknown. In the present study, we showed that ROCK1 kinase activity and its APP binding were enhanced in AD brain, resulting in increased β‐secretase cleavage of APP. Furthermore, we firstly confirmed that APP served as a substrate for ROCK1 and its major phosphorylation site was located at Ser655. The increased level of APP Ser655 phosphorylation was observed in the brain of APP/PS1 mice and AD patients compared to controls. Moreover, blockade of APP Ser655 phosphorylation, or inhibition of ROCK1 activity with either shRNA knockdown or Y‐27632, ameliorated amyloid pathology and improved learning and memory in APP/PS1 mice. These findings suggest that activated ROCK1 targets APP Ser655 phosphorylation, which promotes amyloid processing and pathology. Inhibition of ROCK1 could be a potential therapeutic approach for AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号